Skip to content Skip to navigation

Biologic and Materials Sciences and Division of Prosthodontics

Pierchala Lab Publications

  • E. Bogenmann, P.S. Thomas, Q. Li, J. Kim, L.T. Yang, B.A. Pierchala and V. Kaartinen. 2011. Generation of Mice with a conditional allele for the p75(NTR) neurotrophin receptor gene. Genesis. 49: 862-869.
  • D. Bonanomi, O. Chivatakarn, G. Bai, H. Abdesselem, K. Lettieri, T. Marquardt, B.A. Pierchala and S.L. Pfaff. 2012. Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell. 148: 568-582.
  • J.P. Frampton, C. Guo and B.A. Pierchala. 2012. Expression of axonal protein degradation machinery in sympathetic neurons is regulated by nerve growth factor. J. Neurosci. Res. 90: 1533-1546.
  • G.N. Calco, O.R. Stephens, L.M. Donahue, C.C. Tsui and B.A. Pierchala. 2014. CD2-associated protein (CD2AP) enhances Casitas B-lineage lymphoma-3/c (Cbl-3/c)-mediated Ret isoform-specific ubiquitination and degradation via its amino-terminal SRC Homology 3 (SH3) domains. J. Biol. Chem. 289: 7303-7319.
  • C.C. Tsui and B.A. Pierchala.  2010.  The differential axonal degradation of Ret accounts for cell type-specific function of Glial Cell Line-Derived Neurotrophic Factor as a retrograde survival factor.  J. Neurosci.  30: 5149-5158. (article)
  • B.A. Pierchala, M.R. Munoz and C.C. Tsui.  2010.  Proteomic analysis of the slit diaphragm complex: CLIC5 is a protein critical for podocyte morphology and function.  Kidney Intl.  In press.
  • C.C. Tsui and B.A. Pierchala.  2008.  CD2AP and Cbl-3/Cbl-c constitute a critical checkpoint in the regulation of Ret signal transduction.  J. Neurosci.  28: 8789-8800. (article)
  • B.A. Pierchala, C.C. Tsui, J. Milbrandt, and E.M. Johnson, Jr. 2007. NGF augments the autophosphorylation of Ret via inhibition of ubiquitin-dependent degradation. J. Neurochem100, 1169-1176 (Article)
  • C.C. Tsui, S.J. Shankland, B.A. Pierchala. 2006. Glial cell line-derived neurotrophic factor and its receptor Ret is a novel ligand-receptor complex critical for survival response during podocyte injury. JASN. 17, 1543-1552. (Article)
  • B.A. Pierchala, J. Milbrandt, and E.M. Johnson, Jr. 2006. Glial cell line-derived neurotrophic factor-dependent recruitment of Ret into lipid rafts enhances signaling by partitioning Ret from proteasome-dependent degradation. J. Neurosci. 26: 2777-2787 (Article)
  • C.S. Lee, L.Y. Tee, S. Dusenbery, T. Takata, J.P. Golden, B.A. Pierchala, D.I. Gottlieb, E.M. Johnson, Jr., D.W. Choi, B.J. Snider. 2005. Neurotrophin and GDNF family ligands promote survival and alter excitotoxic vulnerability of neurons derived from murine embryonic stem cells. Exp. Neurol. 191:65-76.
  • B.A. Pierchala, R.C. Ahrens, A.J. Paden, and E.M. Johnson, Jr. 2004. Nerve Growth Factor promotes the survival of sympathetic neurons through the cooperative function of the Protein Kinase C and Phosphatidylinositol 3-Kinase pathways. J. Biol. Chem. 279: 27986-27993. (Article)
  • Brian A. Tsui-Pierchala, Rebecca C. Ahrens, Robert J. Crowder, Jeffrey Milbrandt, and Eugene M. Johnson, Jr. 2002. The long and short isoforms of Ret function as independent signaling complexes. J. Biol. Chem. 277: 34618-34625.(Article)
  • Brian A. Tsui-Pierchala, Mario Encinas, and Eugene M. Johnson, Jr. 2002. Lipid rafts in neuronal signaling and function. TINS. 25: 412-417. (Article)
  • Brian A. Tsui-Pierchala, Jeffrey Milbrandt, and Eugene M. Johnson, Jr. 2002. NGF utilizes c-Ret via a novel GFL-independent, inter-RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. Neuron. 33: 261-273. (Article)
  • Charles A. Harris, Mohanish Deshmukh, Brian A. Tsui-Pierchala, Anna C. Maroney, and Eugene M. Johnson, Jr. 2002. Inhibition of the JNK signaling pathway by the MLK inhibitor CEP-1347 (KT7515) preserves metabolism and growth of trophic factor deprived neurons. J. Neurosci. 22: 103-113.
  • Mario Encinas*, Malu G. Tansey*, Brian A. Tsui-Pierchala, Joan X. Comella, Jeffrey Milbrandt, and Eugene M. Johnson, Jr. 2001. c-Src is required for Glial Cell Line-Derived Neurtrophic Factor (GDNF) Family Ligand-mediated survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J. Neurosci. 21: 1464-1472.
    These authors contributed equally
  • B.A. Tsui-Pierchala, G.V. Putcha, and E.M. Johnson, Jr. 2000. Phosphatidylinositol-3 kinase is required for the trophic, but not the survival-promoting, actions of NGF on sympathetic neurons. J. Neurosci. 20: 7228-7237.(Article)
  • B.A. Tsui-Pierchala and D.D. Ginty. 1999. Characterization of an NGF-P-TrkA retrograde signaling complex and age-dependent regulation of TrkA phosphorylation in sympathetic neurons. J. Neurosci. 19: 8207-8218. (Article)
  • B. Pierchala and D. Ginty. 1997. NGF Signal Transduction and Regulation of Gene Expression Kinases and Phosphatases in Lymphocyte and Neuronal Signaling. H. Yakura, Ed. Tokyo: Springer-Verlag. pp. 207-216.
  • A. Riccio*, B.A. Pierchala*, C.L. Ciarallo, and D.D. Ginty. 1997. An NGF-TrkA-Mediated Retrograde Signal to Transcription Factor CREB in Sympathetic Neurons. Science. 277: 1097-1100.
    These authors contributed equally (Article)
  • G. Wiemer, B. Pierchala,  S. Mesaros,  B.A. Schoumllkens, and T. Malinski. Direct Measurement of Nitric Oxide Release from Cultured Endothelial Cells Stimulated by Bradykinin or Ramiprilat. Endothelium. 4(2): 119 – 125.
  • N. Hill,  B. Pierchala,  A. Johns,  F. Kiechle, G.M. Rubanyi, and T. Malinski. 1996.In Situ Measurements of Nitric Oxide Release from Endothelial Cells Grown Directly on a Porphyrinic Sensor. Endothelium.  4(2):  63-69.
  • D.M. Sabatini, B.A. Pierchala, R.K. Barrow, M.J. Schell, and S.H. Snyder. 1995. The Rapamycin and FKBP12 Target (RAFT) Displays Phosphatidylinositol 4-Kinase Activity. J. Biol. Chem. 270: 20875-20878.
  • C.C. Tsui and B.A. Pierchala.  2008.  CD2AP and Cbl-3/Cbl-c constitute a critical checkpoint in the regulation of Ret signal transduction. J. Neurosci.  28: 8789–8800. (Article)